Low Cost, 275MHz Rail-to Rail Amplifiers

Advanced Data

AD8061/62/63/64

FEATURES

Low Cost
Single (AD8061)
Dual (AD8062)
Single with Disable (AD8063)
Quad (AD8064)
Rail-to-rail Output swing
High Speed
$275 \mathrm{MHz},-3 \mathrm{~dB}$ Bandwidth ($\mathrm{G}=+1$)
$900 \mathrm{~V} / \mathrm{ms}$ Slew Rate
Operates on 2.7 V to 12 V Supplies
Excellent Video Specs ($R \mathrm{~L}=150 \Omega, \mathrm{G}=+2$)
Gain Flatness 0.1 dB to 30 MHz
0.01\% Differential Gain Error
0.05° Differential Phase Error
Low Power
7.2 mA /Amplifier Typ Supply Current

AD8063 300μ A when disabled
Small Packaging
AD8061 Available in SOIC-8 and SOT23-5
AD8062 Available in SOIC-8 and μ SOIC AD8063 Available in SOIC-8 AD8064 Available in SOIC-14 and TSSOP

APPLICATIONS

Imaging
Photodiode Pre-amp
Professional Cameras
Hand Sets
DVD / CD
Filters
A-to-D Driver

PRODUCT DESCRIPTION

The AD8061, AD8062, AD8063, and AD8064 are rail-torail out voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input voltage range and output voltage swing making them easy to use on single supplies as low as 2.7 V .

Despite being low cost, the AD8061, AD8062, AD8063, and AD8064 provide excellent overall performance. For video applications their differential gain and phase errors are 0.01% and 0.052° into a 150Ω load, along with 0.1 dB flatness out to 30 MHz . Additionally, they offer wide bandwidth to

CONNECTION DIAGRAMS
(TOP VIEW)

TSSOP-14 (RU-14)

275 MHz along with $900 \mathrm{~V} / \mu$ s slew rate.

The AD8061, AD8062, AD8063, and AD8064 offer low power of $7.2 \mathrm{~mA} /$ amplifier, while being capable of delivering up to 85 mA of load current. The AD8063 has a power down disable feature that reduces the supply current to $300 \mu \mathrm{~A}$. These features make the AD8063 ideal for portable and battery powered applications where size and power is critical.

Model	Operating Temperature Range\quad Package		

SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+/-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{R}_{\mathrm{F}}=0 \Omega$, Gain $=+1$, unless otherwise noted)

Parameter	Conditions	AD8061/62/63/64			Units
		Min	Typ	Max	
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=-1,+2, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \text { Step }, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=4 \mathrm{~V} \text { Step }, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V} \text { Step } \end{aligned}$		$\begin{gathered} 275 \\ 115 \\ \text { TBD } \\ 30 \\ 750 \\ 900 \\ 14 \end{gathered}$		MHz MHz MHz MHz V/ $\mu \mathrm{s}$ V/ $\mu \mathrm{s}$ ns
NOISE/HARMONIC PERFORMANCE Total Harmonic Distortion Crosstalk, Output to Output Input Voltage Noise Input Current Noise Differential Gain Error Differential Phase Error Third Order Intercept SFDR	$\begin{aligned} & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2 \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{NTSC}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{NTSC}, \mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{~F}=5 \mathrm{MHz} \end{aligned}$		$\begin{gathered} -80 \\ -50 \\ -60 \\ 8.5 \\ 1 \\ 0.01 \\ 0.05 \\ \text { TBD } \\ \text { TBD } \\ \hline \end{gathered}$		dBc dBc dB $\mathrm{nV} / \mathrm{NHz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ \% Degree dBM dB
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Open Loop Gain	$\begin{aligned} & \mathrm{T}_{\min }-\mathrm{T}_{\max } \\ & \mathrm{T}_{\min }-\mathrm{T}_{\text {max }} \\ & \mathrm{V}_{\mathrm{o}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{~V}_{\mathrm{o}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 1 \\ \text { TBD } \\ 3.5 \\ 0.1 \\ \text { TBD } \\ 0.3 \\ 88 \\ \text { TBD } \end{gathered}$	6	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \pm \mu \mathrm{A} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$
INPUT CHARACTERISTICS Input Resistance Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio	$\begin{aligned} & + \text { Input } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 10 \\ 2 \\ -5.3 \text { to } 3.2 \\ 80 \end{gathered}$		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{pF} \\ \mathrm{~V} \\ \mathrm{~dB} \end{gathered}$
OUTPUT CHARACTERISTICS Output Voltage Swing Output Current Capacitive Load Drive	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=150 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{o}}=+/-4 \mathrm{~V} \\ & 30 \% \text { over shoot } \end{aligned}$		$\begin{gathered} 4.5 \text { to }-4.5 \\ 4.9 \text { to }-4.9 \\ 85 \\ 520 \end{gathered}$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \mathrm{pF} \end{gathered}$
POWER DOWN DISABLE Turn-on Time Turn-off Time Input Voltage - Disabled Input Voltage - Enabled			TBD TBD TBD TBD		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLY Operating Range Quiescent Current per Amplifier Supply Current when Disabled Power Supply Rejection Ratio		2.7	$\begin{gathered} 10 \\ 7.2 \\ 0.3 \\ -80 \end{gathered}$	12	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~dB} \end{gathered}$

Analog Devices Confidential Information

